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Abstract
We show that the field dependence of the magnetic penetration depth (λ), for
which muon spin rotation (µSR) is an excellent microscopic probe, provides
useful information on the degree of anisotropy of the superconducting order
parameter. In type II superconductors associated with anisotropic order
parameters, λ is sensitive to the quasiparticle excitation induced by the Doppler
shift due to a supercurrent around magnetic vortices. The presence of such
low energy excitations manifests itself in the non-zero slope of λ against an
external magnetic field. We review recent results on the field dependence of
λ obtained from the application of µSR to novel superconductors that exhibit
unconventional characters associated with the anisotropic order parameter.

1. Introduction

One of the greatest impacts of the discovery of high Tc cuprate superconductors is renewed
interest in the exotic mechanisms of superconductivity, and a boosted search for their model
systems, which has led to a soaring number of novel materials identified as superconductors [1].
They include varieties of transition metal oxides, borides, borocarbides, and other intermetallic
compounds with rare-earth elements. The list can be readily extended by including those based
on organic materials, and is still growing in length. Compared with classical simple metals
or binary compound superconductors, they have a common distinctive feature that the pairing
correlation is potentially highly anisotropic due to a strong electronic correlation (Coulomb
repulsion) and/or a considerably two-dimensional nature of the Fermi surface, which is also
shared by cuprate superconductors.

It is well established that any metallic system can fall into a superconducting state
when there is an effective interaction that is attractive between the conduction electrons (pair
correlation). In this situation, electrons tend to form a bound (pairing) state between those with
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opposite momenta (k and −k), so the phase of the pairing wavefunction may become absolute
zero [2]. This instability towards the formation of electronic bound states without a barrier
is an intrinsic characteristic of the Fermi surface, irrespective of the microscopic mechanism
of the attractive interaction. When the pair correlation is mediated by the electron–phonon
interaction, as in ordinary cubic metals, the pair correlation has the least dependence on k (the
relative orbital angular momentum L = 0), and thereby the structure of the superconducting
order parameter �(k) is isotropic over the entire Fermi surface. Because of the mandatory
requirement of Fermi statistics that the electronic wavefunction must be antisymmetric, the
remaining freedom of the spin state in the pairing function is set to being a singlet (S = 0).
This pair correlation, having s-wave and spin singlet symmetry, is conventionally called the
‘BCS mechanism’; in its narrower sense, the electron–phonon interaction is presumed to be
the primary origin of the attractive interaction [3].

Historically, the first sign of non-BCS-type pairing was found in the superfluidity of liquid
3He [4, 5], where the neutral 3He atoms (which have a nuclear spin of 1/2 and thereby obey
Fermi statistics) play the role of electrons in superconductivity. It is known that liquid 3He can
be regarded as being a Fermi liquid (i.e., having a well-defined Fermi surface) below ∼102 mK,
and that it becomes a superfluid below a few mK, where it can flow through narrow channels
without friction (superfluidity). However, there is a major difference between the nature of the
pairing between 3He atoms and that of the BCS type. The 3He atom has a hard core having
a repulsive interaction with a relatively large radius, which makes it difficult to pair in a state
with zero angular momentum. Thus, many theories have predicted that 3He atoms may pair
in a p-wave (L = 1) or d-wave (L = 2) state, where they can keep themselves apart while the
pairing interaction is at work [6, 7]. Later, experiments confirmed that they were indeed in a
p-wave state. This also meant that the spin part of the pairing wavefunction (order parameter)
must be in a triplet state (S = 1), leading to a variety of possibilities for the total state of
the pairing wavefunction (∝�(k)) for breaking symmetry. It is now established that there are
at least three different phases in the superfluidity of liquid 3He that all have different order
parameters.

It is readily predicted that a situation similar to that in liquid 3He can be realized when
a short range repulsive electronic correlation is not negligible in metallic superconductivity.
As has been established during the past decade, high Tc cuprates are among the first such
examples in which electrons pair in a state other than an s-wave one due to a strong on-
site repulsive correlation. The Cooper pairs in cuprates prefer a d-wave state because of the
tetragonal structure of the two-dimensional CuO2 lattice and the associated symmetry of the
Fermi surface. More specifically, the pairing is a dx2−y2 wave and the order parameter is
described by a gap function,

�(k) = �0(cos kx − cos ky) � �0(k
2
y − k2

x), (1)

where �0 is the maximum value of the anisotropic gap; the energy gap vanishes along the
lines kx = ±ky, which are called line nodes. It also happens that the electronic correlation in
cuprates is antiferromagnetic, as is naturally expected for doped Mott insulators, which makes
it favourable for forming spin singlet pairs. The latter points to a magnetic origin as a pairing
mechanism, irrespective of the true nature of the ground state which is still under debate. Thus,
the structure of the superconducting order parameter reflects important characteristics of the
electronic correlation.

In this paper, we review our recent studies on the structure of the superconducting order
parameter in novel type II superconductors by means of muon spin rotation/relaxation (µSR).
It is well known that a magnetic field can penetrate type II superconductors as a bundle of
quantum flux lines (magnetic vortices) [8], where the spatial field distribution, B(r), becomes
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inhomogeneous due to gradual change in the supercurrent flow around the vortices. The degree
of inhomogeneity, which is primarily determined by the magnetic penetration depth (λ), a
magnetic cut-off parameter (ξv, which is proportional to the Ginzburg–Landau (GL) coherence
length ξGL), and the spacing of vortices (a) can be measured directly via µSR as a spin–spin
relaxation (1/T2). By applying a refined analysis technique, one can reconstruct B(r) more
accurately so that both λ and ξv may be deduced separately [9]. Among various experimental
techniques applied to a similar end, the µSR technique is unique in many respects. Namely,
it is a microscopic technique that can be applied to virtually any superconductors having a
reasonable magnetic penetration depth (λ � 5000 Å). Also, because of the purely magnetic
nature of a spin 1/2 probe, the interpretation of the µSR spectra is free from any complication
due to additional interactions from higher multipoles often found in nuclear magnetic resonance
(NMR). The µSR technique is sensitive to the bulk property, and is thus free from effects
specific to the surface, while they often present problems for scanning tunnelling spectroscopy
(STS) and angle-resolved photoemission spectroscopy (ARPES).

In the following, we demonstrate that the temperature/field dependence of λ is strongly
affected by the anisotropy of the order parameter. In particular, λ is enhanced by an external
field due to the Doppler shift of quasiparticles in the gap nodes [10], which leads to almost a
linear increase of λ with increasing field. This feature is regarded as an unambiguous sign of
the presence of nodes in the energy gap or that of a small energy gap in the multi-gap order
parameter. We show several examples of field-dependentλ, some of which are indeed identified
to have anisotropic (or multi-gap) order parameters by other experimental techniques. A more
comprehensive review of a similar study can be found elsewhere [9].

2. The internal magnetic field distribution in the mixed state

2.1. The microscopic model

In penetration depth measurements, it is common to assume a geometrical condition wherein
muons are implanted into a specimen with the initial spin polarization perpendicular to the
external field, H = (0, 0, H ). Then, since muons stop randomly along the length scale of
the flux line lattice (FLL), the time evolution of complex muon polarization, P̂(t), provides a
random sampling of the internal field distribution, B(r) = (0, 0, B(r)):

P̂(t) ≡ Px(t) + iPy(t) = exp(−σ 2
b t2)

∫ ∞

−∞
n(B) exp(iγµBt + φ) dB, (2)

n(B) = 〈δ(B − B(r))〉r, (3)

where Px,y(t) is proportional to the time-dependentµ+–e+ decay asymmetry, Ax,y(t), deduced
from a corresponding set of positron counters, n(B) is the spectral density for the internal field
defined as a spatial average (〈 〉r) of the delta function, γµ is the muon gyromagnetic ratio
(=2π × 135.53 MHz T−1), and φ is the initial phase of muon precession [11, 12]. The
additional relaxation (σb) is mainly due to random local fields from nuclear magnetic moments
(σn ∼ 0.1 µs−1) and the distortion of the flux line lattice due to a random pinning of vortices
(σp), which can be approximated by a Gaussian relaxation [11]. These equations indicate that
the real amplitude of the Fourier-transformed muon precession signal corresponds to n(B)with
an appropriate correction of σb. While σn can be estimated from the spectrum in the normal
state, σp often needs to be considered as a variable parameter, depending on the temperature
and/or external magnetic field.

In modelling the internal field distribution of the vortex state, the simplest approach is
to assume that the field distribution is a linear superposition of that for an isolated vortex, as
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Figure 1. A magnetic field distribution
n(B) calculated using the modified London
model with a triangular flux line lattice. (A
Lorentzian cut-off was assumed.) The label ‘c’
refers to the contribution from vortex cores, ‘s’
to saddles, and ‘v’ to valleys. The Gaussian
distribution is only meant as a guide to the eye.

presumed in the London theory [13]. This is a reasonable assumption as long as the inter-vortex
distance is much longer than the GL coherence length (H � Hc2). Then, what we need is to
know the field distribution around a single vortex and the structure of the vortex lattice. The
latter must be given from other sources of information, such as small angle neutron scattering
(SANS) or scanning tunnelling microscopy/spectroscopy (STM/STS). In the London model,
B(r) is approximated as the sum of the magnetic inductions from isolated vortices, to yield

B(r) = B0

∑
K

e−iK·r

1 + K 2λ2
F(K , ξv), (4)

where K are the vortex reciprocal lattice vectors, B0 (�µ0 H ) is the average internal field, λ
is the London penetration depth, and F(K , ξv) is a non-local correction term with ξv being
the cut-off parameter for the magnetic field distribution; care must be taken not to interpret ξv

naively as ξGL which is for the spatial variation of the superconducting order parameter. While
the Lorentzian cut-off, F(K , ξv) = exp(−√

2K ξv), is predicted to be a better approximation
for the GL theory at lower fields [14], the Gaussian cut-off, F(K , ξv) = exp(−K 2ξ2

v /2),
generally provides satisfactory agreement with the data [15]. Note, however, that the Gaussian
cut-off is derived from the GL equations near Hc2, and thus would not be appropriate at lower
fields. A comparison of the analysis on identical data indicates that a Gaussian cut-off yields
a significantly larger value for λ and a stronger field dependence (about a factor 2) than those
obtained with a Lorentzian cut-off [9].

Besides the London model, there are a couple of models for B(r) based on the Ginzburg–
Landau theory. Although the GL equations can be solved to yield an approximate analytical
solution for the mixed state near Hc1 or Hc2, they must be solved numerically for intermediate
fields. Fortunately, it is known that the field distribution obtained from exact numerical
solutions of the GL equations is in excellent agreement with that from the modified London
model at low fields and arbitrary κ (=λ/ξGL, the GL parameter) [16].

One of the most important characteristics of n(B) obtained from these models is the site-
selective feature of the line shape. As shown in figure 1, the sharp peak due to the van Hove
singularity found in the lower field mainly represents the contribution from the saddle points of
B(r), the lower field end from the central valleys among vortices, and the high field end from
the region near the vortex cores. This quite asymmetric field profile with such a geometrical
correspondence allows us to determine λ and ξv reliably by comparing the time evolution of
the muon spin polarization with that calculated using n(B).

It is often the case that the superconducting properties in non-cubic compounds are strongly
anisotropic, leading to a large difference between the magnetic penetration depths for in-plane
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and perpendicular directions. More specifically, in uniaxial superconductors with Mab and Mc

being the carrier mass for in-plane and perpendicular directions, we have

B(r, θ) = B0

∑
K

b(K)e−iK·r F(K , ξv), (5)

b(K) = 1 + K 2mzzλ
2

(1 + K 2
x mabλ2 + K 2

y mxxλ2)(1 + K 2mzzλ2)− K 2 K 2
y m2

xzλ
4
, (6)

where θ is the polar angle of the c-axis,mab = Mab/M , mc = Mc/M (with M = (M2
ab Mc)

1/3),
and

mxx = mab cos2 θ + mc sin2 θ, (7)

mzz = mab sin2 θ + mc cos2 θ, (8)

mxz = (mab − mc) sin θ cos θ. (9)

Thus, the line shape depends on λab = λ
√

mab and λc = λ
√

mc in a complex manner [17].

2.2. Gaussian field distribution

When the quality of µSR data is good enough to be analysed using the above model, we
can obtain λ and ξv simultaneously by directly comparing the µSR time spectrum with that
calculated from B(r). Unfortunately, our experience shows that this is not always the case when
the sample is not a single crystal, or λ happens to be very large, etc, so that the characteristic
features of n(B) and the associated time spectra important for such analysis are smeared out.
In such a situation, the Gaussian field distribution has been used as a convenient analytical
model, where the depolarization rate is presumed to be given by the second moment of the
field distribution (λ 
 ξv),

〈�B2〉 = 〈(B(r)− µ0 H )2〉r, (10)

which is reflected as T2 relaxation in the µSR line shape. The Gaussian distribution of local
fields naturally leads to a Gaussian depolarization function,

P̂(t) � exp(−σ 2
b t2) exp(−σ 2t2/2) exp(iγµB0t + φ), (11)

σ = γµ
√

〈�B2〉. (12)

For the ideal case of a triangular FLL with an isotropic effective carrier mass and a cut-off
K ≈ 1.4/ξv provided by the numerical solution of the GL theory, λ can be deduced from σ

using the following relation [18, 19, 12]:

σ(h) (µs−1) = 4.83 × 104(1 − h)λ−2 (nm), (13)

where h = H/Hc2. While the above form is valid for h < 0.25 or h > 0.7, a more useful
approximation valid for an arbitrary field is [12]

σ(h) (µs−1) = 4.83 × 104(1 − h)[1 + 3.9(1 − h)2]1/2λ−2 (nm). (14)

The field dependences of these equations represent a reduction of the Gaussian width due to a
stronger overlap of vortices at higher fields, while λ is a constant; therefore, the deviation of
σ(h) from these equations can be attributed to the change of λ with the field.

However, the microscopic situation of the FLL state is considerably different from the
above ‘ideal’ one in practical cases where Gaussian damping is actually observed, because
there must be an additional effect of randomness to round the sharp feature of n(B). This
also makes it difficult to distinguish σb from σ in equation (11), giving rise to a problem in
comparing the values of λ, for example—between those from an analysis using the modified
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London model and those obtained from the Gaussian approximation (where the influence of
σb is indistinguishable).

In order to examine the model dependence of the analysis, we made a simulation to
compare the various results from an analysis where we generated µSR time spectra using
a modified London model and then analysed them by means of simple Gaussian damping
(equation (11)) to deduce σ . According to our result, the Gaussian distribution originates from
the distribution of λ (which may vary at different sample domains), which must be present in
polycrystalline powder specimens of anisotropic superconductors (e.g., λc 
 λab). As is also
clear in the field profile shown in figure 1, the simulated time spectra with typical values for λ
(2000–3000 Å) cannot be fitted by equation (11) due to the strongly exponential-like damping;
this is obviously due to the contribution of high frequency tails in the spectral density, n(B).
(Thus, the use of the second moment as an approximation in the ideal situation would be valid
only when the relaxation rate is small enough to eliminate the asymmetric feature of n(B).)
The situation was much improved when the Gaussian distribution of λ was introduced with a
variance (σλ),

G(λ) ∝ exp[−(λ− λ)2/σ 2
λ ], (15)

where λ is the mean value. For the parameter values shown in figure 2, the time spectra become
Gaussian-like when σλ ∼ 600–800 Å, yielding reasonable reduced chi-squared values from
equation (11). We also assumed a gradual decrease of σλ,

σλ(h) = σλ(1 − h2), (16)

considering that the elastic moduli Cii of the FLL, which control the FLL distortion and
the associated modulation of λ, exhibit a quadratic dependence on the applied field. (Note,
however, that the factor 1 − h2 yields only a small change of σλ(h) for h < 0.5.) Some
examples are shown in figure 2 for σλ = 800 Å, where the penetration depth (λG), obtained
using equation (14) from σ(h), is plotted together with the original λ. A reasonable agreement
between λG and λ is seen, except for the case when λ = 2000 Å, where λG takes systematically
lower values at all fields. This can be readily understood by considering the fact that σ is
enhanced by an amount σp as a consequence of equation (16). We also examined the field
dependence of λ, which would be most crucial in the following arguments,

λ(h) = λ(0)[1 + ηh], (17)
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Figure 3. The Fermi surface shifted by the quasi-classical Doppler effect due to the supercurrent vs
around vortices. While such a shift has no effect on the quasiparticle excitation for the isotropic gap
(ε(vF ·vs) < �s), it induces additional excitation by breaking pairs near to the nodal region (centre,
pointed by arrows). A similar situation is expected for a multi-gapped order parameter when the
sample temperature is greater than that determined by the smallest energy gap (kBT ��S).

where η is a dimensionless parameter used to express the magnitude of the field dependence.
As is evident in figure 2, the slope dλG/dh is slightly weaker than the original assumption;
when we take η = 2 for the simulation, we obtain η = 1.53 as the corresponding slope for λG.
However, when there is no field dependence of λ (η = 0), λG exhibits the least dependence on
the field (η = 0.11). Thus, we can conclude that the field dependence of the penetration depth
(as a mean value) obtained from the Gaussian field approximation provides a sound basis for
the characterization of superconductors.

3. The Doppler shift and the associated non-linear effect

In the FLL state, the quasiparticle momentum vF is shifted by the flow of supercurrent vs

around the vortices due to a semi-classical Doppler shift, leading to a shift of the quasiparticle
energy spectrum by an amount ε = mvF · vs. Since the density of states (DOS), N(E), is
non-zero, except at the Fermi level (E = 0) and is higher at larger energy (0 < E < �0) for
the anisotropic order parameter, quasiparticles can be excited by the Doppler shift outside of
the vortex cores with a population proportional to N(E +ε(vF ·vs)), leading to an enhancement
of λ [10]. In other words, the Cooper pairs with a gap energy of less than ε can be broken by
the Doppler shift (see figure 3). Historically, a similar effect was considered first for type I
superconductors, where the non-linear response of the shielding current in the Meissner effect
due to the ‘backflow’ of quasiparticles was discussed [20].

The magnitude of η represents the degree of the increase of the DOS for quasiparticles,
which must be roughly proportional to the phase volume of the Fermi surface where the Doppler
shift exceeds the gap energy (ε(vF · vs) > �(k)). It also follows that the effect depends on
the direction of vs (and hence that of the external field H relative to the order parameter) in a
single-crystalline specimen. According to Volovik, the quasiparticle density of states for the
anisotropic order parameter is

Ndeloc(0) � NF K ξ2
GL

√
h ≡ NFg(h), (18)

K ∝
∫

|�(k)|<ε
|�(k)| dk, (19)

where NF is the DOS for the normal state and K is a constant of the order of unity [10].
As illustrated in figure 3, a similar effect is anticipated for the case of a multi-gapped order
parameter; when the sample temperature is greater than that determined by the smallest energy
gap (∼�S/kB), the corresponding energy band serves effectively as a node in the gap.
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represented by a linear dependence, as in
equation (22) with c ∼ 1.5.

It is important to note that K is proportional to the phase volume of the low excitation
energy in �(k) (or the relative weight of the band having the smallest energy gap), thereby
carrying information on the degree of anisotropy for �; the factor h1/2 comes from the inter-
vortex distance (∝h−1/2) multiplied by the number of vortices (∝h). The superfluid density at
a given field is then

ns(h) � ns(0)[1 − g(h)], (20)

which is directly reflected in the magnetic penetration depth,

1

λ2(h)
= 4πe2

m∗c2
ns(h). (21)

Therefore, as a mean approximation, we have

λ(h) = λ(0)√
1 − g(h)

∼ λ(0)[1 + cK ξ2
GLh], (22)

where c � 1.5 for 0 < h < 0.5, as shown in figure 4. Thus, the comparison between
equations (17) and (22) yields

η � cK ξ2
GL, (23)

indicating that the slope η reflects the phase volume of the Fermi surface where |�(k)| < ε.
Since the Doppler shift is far smaller than the gap energy in the usual situation for the

isotropic gap, no such enhancement is expected for the conventional s-wave pairing (η � 1). A
recent theoretical calculation based on the Bogoliubov–de Gennes (BdG) equations indicates,
however, that η is not exactly zero for s-wave pairing, although it is much smaller than that for
dx2−y2 pairing [21]. It must also be noted that the effect of temperature must be considered to
evaluate the degree of anisotropy from the measurement of η. In general, the phase volume
of the Fermi surface where |�(k)| < kBT also contributes to quasiparticle excitation. Thus,
strictly speaking, the observation of a finite η means the presence of a small gap region with
an upper bound of ∼kBT (see below: the case of MgB2, for example).

Finally, we point out that the magnitude of K depends on the direction of the Doppler shift
relative to the nodes on the Fermi surface. This means that one may be able to determine the
angular position of nodes by measuringη as a function of the field direction; vs is perpendicular
to H and thereby one can control the direction of vs via the magnetic field direction. Note, for
example, that the situation in figure 3 (centre) corresponds to the case when H ‖ ky . When we
rotate H by ψ = π/4 within the kx–ky plane, the nodes perpendicular to H do not contribute
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to the quasiparticle excitation and thereby λc must be relatively small for this direction of H.
Thus, λc (and thereby η) is predicted to exhibit an azimuth angle dependence for H (no such
effect is expected for λab because vs takes all the directions within the kx–ky plane). While
such a possibility is yet to be examined forµSR, we note that there have been several attempts
to measure the azimuth angle dependence of bulk properties including thermal conductivity
and electronic specific heat for novel superconductors, for which some interesting results are
already reported [22, 23].

4. Non-local corrections

Because a superconducting pair correlation occurs over a finite length scale, ξ0 (i.e., the BCS
coherence length), the electromagnetic response of superconductors is subject to various non-
local effects. The primary example is the cut-off term, F(K , ξv), incorporated in the modified
London model (equation (4)). Moreover, there are a couple of other corrections that must be
considered for anisotropic superconductors.

In the superconducting state with gap nodes in the order parameter, the quasiparticles are
mostly confined to the vicinity of the nodes at low temperatures. This generally leads to the
suppression of quasiparticle excitation due to the non-local electrodynamics caused by the
divergent coherence length, ξ ∝ �(k)−1, yielding a weaker temperature/field dependence of
λ at higher fields [24, 25]. Such an effect has been studied experimentally in detail for the case
of YBa2Cu3O6.95 [26, 9].

Another important correction comes from the anisotropy of the Fermi surface. Novel
superconductors including cuprates have a common feature that the Fermi surface tends to
exhibit a strong anisotropy due to, e.g., a two-dimensional and/or multi-band character, which
influences the flow of supercurrent over a length scale h̄vF/�0 [27–30]. More specifically, the
length scale is also controlled by the mean free path (l) for electrons. It turns out that this non-
local correction partially accounts for the change in the vortex lattice structure from triangular
to squared lattice in various systems, including RNi2B2C (R = Y,Lu) [31–36], V3Si [37, 38],
and La2−x Srx CuO4 (x = 0.17) [39]. This also leads to a change in B(r) due to the modified
flow of supercurrent from a circular to a squared shape (see below; e.g. YNi2B2C). Note,
however, that the difference in free energy between a triangular and a square vortex lattice
is fairly small, making the lowest energy configuration strongly dependent on other physical
quantities, such as the temperature, magnetic field, and crystal orientation, which is also in a
strong correlation with the superconducting order parameter.

5. An overview of µSR results

In this section, we try to establish the correspondence between the presence of the anisotropic
order parameter and a non-zero slope (η) in the magnetic field dependence of λ(h). As shown
below, η provides a good measure for the degree of anisotropy in the superconducting order
parameter. However, one has to keep in mind that additional information is generally needed
to resolve the precise symmetry of the pairing; one would be easily led to a false conclusion in
choosing, e.g., between d- and s + g-wave pairing based solely upon the µSR result. Another
origin of apparent anisotropy would be multi-gap order parameters with one of those having a
small gap (<kBT ), as suggested in the case of MgB2 (see below).

While a vast body of superconductors have been investigated by means of µSR, there are
not many of them in which the field dependence of λ(h) has been measured in detail. This is
partly due to the historical reason that theµSR apparatus with a high magnetic field has become
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available for routine service only since the late 1990s. Here, we summarize our recent work
on CeRu2, Y(Pt,Ni)2B2C, Cd2Re2O7, and MgB2, for which detailed µSR measurements
have been performed. The results on NbSe2 and YBa2Cu3O6.95 are also mentioned for a
comparison. A wider variety of compounds in relation to other experimental techniques are
covered elsewhere [40].

5.1. CeRu2

The cubic Laves phase compound, CeRu2 (Tc = 6.1–6.5 K at zero field, µ0 Hc2(T = 0) � 6–
7 T), has a long history of experimental and theoretical studies since its discovery in the
1950s. One of the current issues is its magnetic response at higher fields (h > 0.5), where an
anomalous enhancement of the quasiparticle excitation has been reported. This is suggested
by the observation of de Haas–van Alphen (dHvA) oscillation over a field region where the
cyclotron radius is much larger than the inter-vortex distance [41]. The presence of excess
quasiparticles has been further confirmed by a strong enhancement of λ measured by means
of µSR at higher fields [42]. Moreover, while most of the experimental studies concluded that
the pairing symmetry is a spin singlet s-wave, detailed studies on the spin–lattice relaxation
in nuclear quadrupole resonance (NQR) suggested the presence of anisotropy in the order
parameter [43]. This was apparently in line with the observed non-linear field dependence
(∝h1/2) of the electronic specific heat coefficient γ (h) [44]; as indicated in equation (18),
the quasiparticle excitation has a contribution proportional to h1/2 for the anisotropic order
parameter, while an h-linear dependence is expected for the conventional case, because γ (h)
must be proportional to the volume of normal cores, and thereby to the number of vortices.

However, our µSR study on a high quality single crystal has shown that the field
dependence of γ (h) can be attributed to that of the vortex core radius ρv (∝ξv), at least over the
region h < 0.5; the µSR spectra were analysed (in the frequency domain) using the modified
London model to extract ξv and λ independently [45]. (We later re-analysed some of the data
in the time domain and found that the result was unchanged.) When the quasiparticles are
confined within the vortex cores, the electronic specific heat coefficient must be proportional
to the cross section of the cores multiplied by the number of vortices,

γ (h) ∝ πρ2
v(h)h = πρ2

0 hβ, (24)

ρv(h) = ρ0h(β−1)/2, (25)

where our result for ρv(h) is well reproduced by β � 0.53. It is clear that the observed
nearly h1/2 dependence of γ (h) [44] exhibits perfect agreement with our result. This is also
qualitatively in line with a recent theoretical calculation for s-wave superconductors based on
the quasi-classical Eilenberger equations, where β � 0.67 (for T/Tc = 0.5) is predicted due
to various non-trivial effects, including those from the inter-vortex interaction and the vortex
core excitation at finite temperature [46]. This strongly suggests that quasiparticle excitation
is confined within the normal cores of the vortices. More importantly, we found that λ(h)
exhibits the least dependence on h (namely, η � 0) over the relevant field range, as clearly
shown in figure 5 [45]. This is perfectly in line with the above conclusion obtained for the
vortex cores, as is also the case with s-wave pairing suggested by the vast majority of other
experimental results. Thus, it provides one of the canonical examples for λ(h) in the case of
isotropic s-wave pairing, as was recently found in V3Si [47].

Meanwhile, it must be stressed that the situation changes drastically upon increasing the
field above h ∼ 0.5. Figure 5 indicates that λ exhibits a divergent increase for h > 0.6 with
increasing field, thereby suggesting a divergent increase of the quasiparticle excitation. This
is strongly supported by the observation of the dHvA effect, as mentioned above. To our
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knowledge, there is no simple explanation of such an anomaly1. One possible model may
be the proposed Fulde–Ferrel–Larkin–Ovchinnikov one, where a new superconducting phase
with a spatially inhomogeneous order parameter is predicted to occur in rare-earth compounds
having a large spin paramagnetism [49, 50].

Finally, we note that the absence of a clear coherence peak in NQR may be due to the weak
random magnetism observed below ∼40 K in zero field µSR [51]. An increase in the muon
spin relaxation rate of the order of 0.02 µs−1 was observed in accordance with the increase of
the ac susceptibility [52]. The sample quality suggests that the weak magnetism is of intrinsic
origin, and would act as a scattering source for pair breaking.

5.2. Y(Ni, Pt)2B2C

The borocarbide superconductor, YNi2B2C (Tc = 15.4 K at zero field, µ0 Hc2(T = 0) � 7–
8 T), has attracted much attention due to the strong h1/2 dependence of the electronic specific
heat coefficient in a high purity specimen [53]. Earlier experiments suggested that an s-wave
pairing was realized in this compound because the system showed little sensitivity to non-
magnetic impurities, as typically found in BCS s-wave superconductors. As we observed for
CeRu2, this led to the speculation of a change of the vortex core radius to reconcile the observed
behaviour of γ (h) with the presumed isotropic order parameter [53]. It was also found that
such an h1/2 dependence was replaced by an h-linear dependence upon replacement of Ni by
Pt (�20%). Now, there is mounting evidence that the order parameter in pure YNi2B2C is
considerably anisotropic [54–57, 23, 58, 59], although the pairing symmetry is basically s-
wave-like. The key to understanding the varying results in borocarbides is that the anisotropy
of the order parameter is indeed sensitive to impurities, which is in good contrast to the
robustness of superconductivity itself; s + g pairing, for example, changes into an effectively
isotropic s-wave pairing, where the anisotropic part (associated with the g-component) is
washed out by impurity scattering. Thus, some of the divided results obtained from NMR
1/T1 measurements may be sorted out in terms of the sample purity [40]. Our µSR study was
quite successful in clarifying the effect of non-magnetic impurities on the anisotropic order
parameter in Y(Ni1−x Ptx)2B2C.

As mentioned before, there is a significant contribution of the non-local effect in
borocarbides due to the anisotropy of the Fermi surface. This effect must be considered for

1 A theoretical calculation by Brandt et al [48], which is quoted in [41], points out the possibility that the order
parameter is suppressed by an external magnetic field, particularly for the direction of k normal to the field. However,
the work does not provide a microscopic account of what the origin of the DOS is for the nearly zero-energy excitations
that they obtained, despite the situation that the order parameter keeps a finite value outside the vortex cores for h < 1.
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modelling of the magnetic field distribution, B(r), and the associated spectral density, n(B),
to obtain the correct values for λ and ξv. To this end, the London model is further modified to
yield

B(r) = B0

∑
K

e−iK·r

1 + K 2λ2 + (c1 K 4 + c2 K 2
x K 2

y )λ
4

F(K , ξv), (26)

where the terms proportional to K 2
x K 2

y represent the non-local effect, with ci being the
parameters coming from the band structure [28]. Moreover, the non-local effect leads to
the formation of a squared flux line lattice, which also modifies B(r). Our result on a single
crystal (where H ‖ c) indicates that these features have a strong influence on n(B) probed by
µSR [36]. For example, no reasonable fit can be obtained when one assumes a square FLL
without non-local correction terms.

It has been revealed by our µSR measurement that the vortex core radius, ρv, in a pure
specimen (x = 0) exhibits a much steeper decrease with increasing field than that estimated
from the electronic specific heat coefficient, γ (h); ρv(h) shrinks sharply for h < 0.1, then
changes only very weakly with the field. This is in marked contrast with the case for CeRu2,
where the field dependence of γ (h) is in good accord with ρv(h) (i.e., γ (h) ∝ hπρ2

v(h)).
This suggests the presence of excess quasiparticle excitation outside of the vortex cores, which
contributes to γ . As shown in figure 6, this is indeed supported by the observation that λ
exhibits a strong field dependence in a pure specimen. The slope is deduced from the linear
fitting (equation (17)) to yield η = 0.95(1). On the other hand, for the Pt-doped specimen
(x = 0.2), λ is mostly independent of the field (η � 0) [60]. This is again consistent with
the presumed hybrid nature of the order parameter, where the s-wave component is relatively
enhanced by impurity scattering. We also note that λ for the Pt-doped specimen is about 1.27
times longer than that expected solely from the conventional impurity effect [60]. This strongly
suggests that there is an excess quasiparticle density of states generated by the interaction
between the impurities and the anisotropic component of the order parameter, as is found in
superconductors with gap nodes.

5.3. MgB2

The revelation of superconductivity in a binary intermetallic compound, MgB2, has attracted
much interest because it exhibits an almost two-times-higher transition temperature (Tc �
39 K) than those of all intermetallic superconductors known to date [61]. The most interesting
issue concerning this compound is whether or not it belongs to the class of the conventional
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BCS-type (namely, phonon-mediated spin singlet s-wave pairing) superconductors. So
far, most experimental results favour phonon-mediated superconductivity [62–69]. On
the other hand, calculations of the band structure and the phonon spectrum predict
a double energy gap [70, 71], with a larger gap attributed to two-dimensional px−y

orbitals, and a smaller gap to three-dimensional pz bonding and antibonding orbitals. The
experimental results of specific heat measurements [72, 73], point-contact spectroscopy [74],
photoemission spectroscopy [75], scanning tunnelling spectroscopy [76] and penetration depth
measurements [77] have supported this scenario.

The double energy gap would have a direct relevance for the temperature dependence of
λ, because there must be excess quasiparticles excited over the smaller energy gap (�S) at
higher temperatures, while the bulk superconductivity is maintained by the larger gap (�L).
At this stage, there are two such µSR measurements reporting the result of an analysis based
on the two-gap model, where �S is reported to be 2.6(2) meV [78] and 1.2(3) meV [79]. On
the other hand, the field dependence of λ is sensitive only to those excited by the Doppler shift,
and therefore the slope η would be zero as long as both energy gaps were isotropic. The only
exception would be that the temperature at which λ(h) is measured is comparable to �S/kB,
so the smaller gap effectively becomes equivalent to nodes in the order parameter. As shown
in figure 7, our result for λ(h) exhibits a clear dependence on h with η = 1.27(29), where the
measurements were performed at T � 10 K [79]. Considering that the measured temperature
nearly corresponds to�S/kB = 14(4)K, the observed field dependence would be qualitatively
consistent with the two-gap model with isotropic order parameters. Meanwhile, if the smaller
gap is as large as 2.6 meV [78], it would mean that either �L or �S is anisotropic.

Unfortunately, so far it is difficult to obtain a single crystal of MgB2 with the dimensions
necessary for a conventional µSR experiment; thus, all of the µSR measurements have been
performed on powder specimens. The time spectra obtained were fitted by the Gaussian
field distribution (equation (11)), where the additional relaxation due to the flux pinning
(∝ exp(−σ 2

p t2)) was not separable. As a matter of fact, we observed an increase of the
relaxation rate with increasing field over the region h < 0.1 for our MgB2 specimen, which
might be related to the flux pinning [79]. However, as we showed in section 2.2, an analysis
based on the Gaussian field distribution model has a relatively weak uncertainty in terms of
the relative change of λ against the field. Thus, we think that the above result provides a sound
basis for a qualitative evaluation of the gap anisotropy.

Another source of complication would be that there is a strong anisotropy of magnetic
response over the crystal direction, which is mixed up in the polycrystalline specimen; it
has been reported that the upper critical field for H parallel to the ab-plane (H ab

c2 ) is about
three times higher than that for the perpendicular direction (H c

c2) [80]. This introduces an
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uncertainty in the definition of the normalized field h (=H/Hc2), which is directly reflected
in the evaluation of η. Thus, further measurements on a single-crystalline specimen would be
necessary for the reliable evaluation of η.

Recently, we made µSR measurements on a new superconductor, Ca(Si0.5Al0.5)2 (Tc =
7.7 K), which has a crystal structure quite similar to that of MgB2 [81]. Provided that the
structure of the order parameter in MgB2 is strongly related to that of the Fermi surface, a similar
situation might be expected in this compound. Our preliminary result on a polycrystalline
specimen with the Gaussian analysis indicates that λ exhibits a field dependence with η � 0.8,
thereby supporting the above conjecture, at least in terms of quasiparticle excitation [82].

5.4. Cd2Re2O7

A class of metal oxides isostructural to the mineral pyrochlore has been attracting considerable
attention because they exhibit a wide variety of interesting physical properties [83]. The
pyrochlore has a general formula of A2B2O7, consisting of BO6 octahedra and eightfold-
coordinated A cations, where A and B are transition metals and/or rare-earth elements. In
particular, the B sublattice can be viewed as a three-dimensional network of corner-sharing
tetrahedra, providing a testing ground for studying the role of geometrical frustration in systems
that have local spins at B sites with an antiferromagnetic (AFM) correlation [84]. Although
metallic pyrochlores comprise a minority subgroup of the pyrochlore family, they consist of
distinct members, such as Tl2Mn2O7, which exhibits a colossal magnetoresistance [85, 86].
In view of these backgrounds, the recently revealed superconductivity in 5d transition metal
pyrochlores and related oxides, Cd2Re2O7 [87, 88] and KOs2O6 [89], is intriguing, because
they evoke anticipation of exotic superconductivity.

It is reported that Cd2Re2O7 falls into the bulk superconducting state below Tc � 1–
2 K [87]. The dc magnetization curve indicates that the superconductivity is of type II with
the upper critical field close to 0.29 T at 0 K. So far, 187Re NMR 1/T1 has exhibited a clear
coherence peak typically found for the conventional s-wave pairing [90], although there are
not many reports concerned with the pairing symmetry. Thus, the existing evidence strongly
suggests that the order parameter is unexpectedly isotropic. This is further supported by the
absence of a field dependence for λ(h). Figure 8 shows λ(h) versus h, where one can clearly
see that η � 0 over the observed field range [91]. Here, we note that the upper critical field
can be determined by a µSR measurement when it is well within the reach of the apparatus
(<7 T). As is evident in equations (13) and (14), the spin relaxation due to FLL is quenched at
h = 1 (i.e., H = Hc2). Thus, from the field dependence of σ , we obtainedµ0 Hc2 = 0.37(5) T
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for our specimen. The normalized field in figure 8 is defined by this value for Hc2. The fact
that λ exhibits the least dependence on h also means that the field dependence of σ is well
reproduced by equation (13) or (14) without considering the change in λ with the field. A
similar field dependence for σ is also reported by another group [92].

On the other hand, for KOs2O6 (Tc � 9.5 K), our preliminary µSR data on a powder
specimen exhibit a strong field dependence of λ(h) [93], suggesting the presence of anisotropy
in the order parameter. This is also consistent with the absence of a coherence peak in the 39K
NMR T1 [94].

5.5. Other examples

As discussed in section 3, quasiparticle excitation due to the Doppler shift is predicted to be
stronger for a larger degree of ‘manifoldness’ in the nodal structure of the order parameter.
Thus, it is naturally expected that superconductors with d-wave pairing would exhibit a strong
field dependence of λ(h). This was proven to be the case by systematic µSR studies on
the vortex state of high Tc cuprates [9]. A typical example is found in YBa2Cu3O6.95 (see
figure 9), in which η is reported to be 5–6.6 over a field range 0 < µ0 H < 2 T [95]. The
measurement was later extended up to 7 T, where it was found that the field dependence of λ(h)
became weaker at higher fields (η ∼ 2 for µ0 H > 2 T) [26]. This is now understood to be a
consequence of the non-local correction discussed earlier in section 4. It must be noted that
the non-local correction has a strong influence on the temperature dependence of λ at higher
fields. These results imply that one must be careful about the field range of measurements in
evaluating the meaning of η; the same is true for the slope λ against temperature, dλ/dT .

The last example is NbSe2 [96, 9], where the situation is similar to that for YNi2B2C or
MgB2. It has been suggested from the non-linear field dependence of γ (h) that there must be
excess quasiparticles induced by a magnetic field [53]. However, the degree of non-linearity
is considerably weaker than that observed in YNi2B2C, suggesting a smaller anisotropy in the
order parameter. This has been supported by other experiments showing that NbSe2 exhibits
s-wave pairing with an anisotropic or double-gap structure, where �L/�S � 2 [97–100]. As
shown in figure 9, the absence of nodes, however, does not necessarily mean η = 0 when the
order parameter is anisotropic (or multi-gapped). It happens that a temperature of ∼0.33Tc
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Table 1. The dimensionless parameter, η, corresponding to the slope of λ(h) against an external
field obtained byµSR. The column ‘model’ shows the field distribution used for each analysis: ‘m-
L’ for the modified London model, ‘GL’ for the Ginzburg–Landau model, and ‘G’ for the Gaussian
field distribution. T denotes the temperature where the field dependence of λ was measured. The
values for V3Si are based on a preliminary report [47].

Tc (K) Pairing symmetry η Model T (K) µ0 Hc2(T ) (T)

YNi2B2C 15.4 Anisotropic s (s + g?) 0.95(1) m-L 3.0 7.0
MgB2 39 Double gap 1.3(3) G 10.0 12.5
NbSe2 7.0 Anisotropic s 1.85(7) m-L 2.3 2.9
YBa2Cu3O6.95 93.2 d 5–6.6 m-L 31.0 95

CeRu2 6.0 Isotropic s (h < 0.5) �0 m-L 2.0 5.0
Y(Ni0.8Pt0.2)2B2C 12.1 Isotropic s �0 m-L 2.5 4.0
Cd2Re2O7 1–2 Isotropic s �0 G 0.2 0.37
V3Si 17 Isotropic s �0 (h � 0.25) GL 3.8 ∼16

(where measurements were performed) [53, 96] is relatively high, so it is almost comparable
to�S. Thus, as discussed earlier, the region around�S in the Fermi surface works effectively
as nodes at such a high temperature.

6. Summary and conclusion

We demonstrated that the field dependence of the magnetic penetration depth λ(h) provides
a sensitive probe for quasiparticles induced by the Doppler shift. As summarized in table 1,
the slope η is positive when the superconducting order parameter has nodes (or a small gap
equivalent to the node at a given temperature), while it is close to zero for the conventional
isotropic order parameter. Despite the ambiguity associated with the slight dependence of λ
on the model employed for the data analysis, the magnitude of η provides a good measure
of the degree of anisotropy. This would be useful in selecting the pairing symmetry and the
associated mechanism of superconductivity for newly discovered materials.
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[51] Huxley A D, Dalmas de Réotier P, Yaouanc A, Caplan D, Couach M, Lejay P, Gubbens P C M and

Mulders A M 1996 Phys. Rev. B 54 R9666
[52] Nakama T, Hedo M, Maekawa T, Higa M, Resel R, Sugawara H, Settai R, Õnuki Y and Yagasaki K 1995
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